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Simplified Equivalent Representations for
Multicoupled Lines and their Application

to Filter Design

HIROAKI KUNIEDA

Abstruct-This paper presents simpfffied brrnped-type equivalent repre-

sentatio~ which are equivalent to muttiwire fines in the vicinity of a

quarter-wavelength frequency. It is believed that the derived representa-

tiOllS CMI (%@ k flppfkd to the SO&@iS and the (kff Of C0@24f-tble

fflters and directional couplers of narrow bandwidths composed of

quarter-wavelength strips.

In this paper, the generrd design method for coupled-iine bandpam

filters is presented as one of the applications. A new bandpass fiiter is

proposed and the design formulas of the fiiter are derived by using the

design method. Furthermore the range of vafidity of the derived repre-

sentations has been checked by showing numerical desii examples. ‘hey

have been found to give excellent remfts for coupled-fine fiiters of

bandwidths up to about 30 percent.

I. INTRODUCTION

G RAPH REPRESENTATION is widely known as the

equivalent circuit of the multiwire-line network [1]. It

consists of distributed inductances and uncoupled unit

elements in terms of Richards’ variable (p= tanh(yl)).

This graph transformation method is often useful in yield-

ing the equivalent circuits of coupled-line filters and other

circuit elements.

Since this graph representation consists of two-port

elements as unit elements, it sometimes requires special

techniques for circuit transformations and also it is not

easy to apply computer aided design methods.

To avoid these disadvantages, lumped-element equiv-

alent representations by use of a half-angle Richards’

variable (~= 2 tanh(yl/2)) were proposed by M. Onoda

and the author [2]. The derived representations were use-

ful for analysis but not easily applied to design filters.

On the other hand, coupled-line filters and directional

couplers of narrow bandwidths are particularly useful in

practical microwave systems. Therefore, useable sim-

plified lumped-element equivalent representations for

multiwire lines are required for both analysis and synthe-

sis even if they are only approximately valid in the vicinity

of the quarter-wavelength frequency fw

This paper presents simplified lumped-element equiv-

alent representations for multiwire lines by introducing a

new variable (q= 2 tanh(j(n/4)(( f/fo) – l))). The derived

representations are useful under about 5-percent relative
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error in the frequency range 0.85 <f/f. <1.15. The repre-

sentations consist of an ideal immittance-inverter bank

and distributed capacitances or inductances in terms of

this q-variable.

Both exact [3] and approximate design methods [4]-[9]

of distributed coupled-line filters have been reported pre-

viously. As an application of the new representation, a

new approximate design method of coupled-line filters is

proposed. The design method can uniformly be applied to

various types of coupled-line filters. Several new and

improved results are obtained. In particular, this paper

shows that the new design method leads to the equivalent

circuits of coupled-line filters easily and does not require

any special techniques. And it shows that the model

expressed by the inductance matrix with inductive cou-

plings between nearest and next-nearest neighbors is ade-

quate and preferable over a sparse capacitance-matrix

design for coupled-line filters with comparatively many

open-circuited terminals. Furthermore, this paper pro-

poses a new type of bandpass filter. Design examples of
new bandpass filters and hairpin-line filters show that the

sparse capacitance matrices designed by the proposed

method give exact responses for relative bandwidth up to

0.3 and more.

II. SIMPLIFIED EQUIVALENT REPRESENTATIONS

A. Exact Equivalent Circuit

Previously M. Onoda and the author reported the

lumped-element equivalent representation for lossless

multicoupled lines by using a half-angle Richards’ vari-

able (~= 2 tanh(j(m/4)(f/fo)), where f. is the quarter-

wavelength frequency. In place of this Q-variable, the

following new variable q is considered:

q=2ta+%-1))(1)

Richards’ variable (p= tanh(j(~/4)(f/fO)) can be ex-

pressed by this q-variable as

p =(4+ q2)/4q. (2)

Fig. 1 shows the frequency characteristics of this vari-

able. In terms of this q-variable, the 2n-port ABCD matrix

[F] of the n-wire line of length 1 and characteristic imped-

ance (or admittance) matrix [ ZO] (or [ YO]) is expressed by
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Fig. 1. The frequency characteristics of the q-variable. (a)

the rational functions of q as

j
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Since this q-variable becomes zero at jo, this frequency

transformation leads to a BP to LP transformation. Equa-

tion (3) can be expressed in another form as

[F]=

[

[In]

~+ ‘q[ Ycl] a;:;] I

“[JA ‘[:]1

Fig. 2, Simplified equivalent circuits of multiwire lines (n= 2). (a)

Z-type representation. (b) Y-type representation.
. .
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where a= b=c=l/2.

The first term and the third term are ABCD matrices of

multiwire lines of length 1/2 in the (q/2)-domain. The

second term represents the ideal immittance-inverter

bank. By cascade connecting circuits corresponding to

each term of (4a), we can obtain the exact equivalent

representation of the multicoupled lines in terms ,of the

q-variable.

Fig. 3. Simpfified equivalent circuits of fundamental circuit elements.

TABLE I
Rmxrrvs ERRORS OF OPEN-CIRCLJITED LINE PERCE~

Y-type

0.466

1.905

4.452

8.365

22.47E
[i/4,1-l Z-type

0.05 -0.154

0.10 -0.619

0.15 -1.400

0.20 -2.509

0.30 -5.760

B. Simplified Equivalent Representations

In order to obtain simplified equivalent representations

in the vicinity off= f, (q= O), we change the coefficients

of qz terms in (3). These changes do not cause large error

if we choose other values of a, b, c under the restriction of

a + b = 1 in (4b). The simplest representations are derived

bychoosing a)a=l, b=c=O, or b) b=l, a=c=O. Corre-

spending to these replacements, we obtain two types of

simplified equivalent representations for multiwire lines
by cascade connecting the circuits corresponding to each

term of (4a) for both a) and b). The representations

obtained for the case of n =2 are shown in Fig. 2(a) and

(b). The two types of ideal immittance-inverter banks as

shown in Fig. 2(a) and (b) are electrically equivalent.

Since the circuits in Fig. 2(a) and (b) are expressed by

the values of characteristic impedance and admittance

matrices, respectively, we call them Z-type and Y-type

representations, respectively. They are easily extended for

the general cases of n-wire lines. Furthermore, fundamen-

tal circuit elements for commensurate-line-length

networks can be expressed as shown in Fig, 3 by use of

the derived two types of equivalent representations in the

simple case of n = 1.

The derived two types of representations were tested

first theoretically with the line short- and open-circuited at

the far end. Table I shows the relative errors of input

impedances compared with the exact computations for the
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case of the line open-circuited at the far end. The relative

error for the Z-type and Y-type representations is under 5

percent for 0.7 <j/jO <1.3 and 0.85 <~/jO <1.15, respec-

tively.

In the case of the line short-circuited at the far end, the

relative errors for each type of representation are the same

as those in the case of the line open-circuited at the far

end.

From these results it is concluded that two types of

representations would be quite adequate for most

narrow-band applications. In general, the Y-type repre-

sentation is suitable for the analysis and the synthesis of

circuits with comparatively many short-circuited terminals

for reasons of easiness and accuracy. On the contrary,

circuits with comparatively many open-circuited terminals

can easily and accurately be analyzed and synthesized by

the use of Z-type representation.

III. DESIGN METHOD FOR COUPLED-LINE FILTERS

As an application of the derived equivalent representa-

tions, the general design method for coupled-line band-

pass or bandstop filters is discussed. Design formulas for

coupled-line bandpass or bandstop filters can be obtained

by equating their equivalent circuits derived from the

general equivalent representations of Fig. 2(a) and (b) to

LC low-pass filters.

In designing these filters, one should first select the type

of response function and the number of lines that yield

the desired insertion loss function of o in the pass and

stopbands. If we denote the desired passband edges of

coupled-line filters by jl and jz, the quarter-wavelength

frequency ~0 and the length of the lines 1 are determined as

f,+ f,
fo=T l= Ao/4 (5)

where & is the wavelength in transmission lines at fw Next

the element values of the prototype filters may be com-

puted and then the elements of the characteristic imped-

ance [2.] or admittance matrices [ YO] can be derived from

the design formulas. This may be done with the aid of the

following approximate relationship between the frequency

scales of the prototype filters and the coupled-line filters

()~=2tan ~f2–f*

c 4 2fo
(6)

where Q= is the cutoff frequency in the q-domain. Further-

more, the n-wire line dimensions should be determined to

yield these matrices. These may be determined from vari-

ous design charts [10].

In this paper, we show the procedure for deriving the

design equations of a new bandpass filter as shown in Fig.

4. The design equations for well-known filters such as

hairpin-line and interdigital-line filters are similarly de-

rived. The advantages of filters of this new type are that

they have fewer connections to ground than interdigital

filters and they require fewer transmission lines than

hairpin-line filters to realize the same order of bandpass

filter.

The assumption of negligible capacitive couplings be-

yond the nearest neighbors (i.e., a sparse capacitance-

I ATM
1

A

Fig. 4. A new bandpass filter.

0 1 1 0

Fig. 5. Derivation of the equivalent circuit of the new bandpass filter.

matrix assumption) corresponds more closely to physical

reality than the one neglecting inductive couplings beyond

the nearest neighbors (i.e., a sparse inductance-matrix

assumption) [6], [8]. However, the sparse capacitance-

matrix assumption leads to very complex equivalent

circuits for hairpin-line filters and filters of this type. By

considering inductive couplings between not only nearest

neighbors but next-nearest neighbors, the proposed design

method leads to easier design procedure based to a first

approximation on the assumption of a sparse [ YO] matrix.

First we derive the equivalent circuit of the section of

Fig. 5(a). Boundary conditions are applied to the termi-

nals of the Z-type representation of Fig. 2(a) with induc-

tive couplings between next-nearest neighbors. Then

open-circuited terminals disappear because they connect

with series inductances and series inverters. We obtain an

equivalent circuit as shown in Fig. 5(b). Reducing the

mutual inductive couplings to a capacitance and induc-

tances, we obtain the equivalent circuit shown in Fig. 5(c)
of the section of Fig. 5(a). Because of a small influence to

the narrow-band bandpass filter characteristics, we ne-

glect the capacitance (Z13/Z12Zz3) in designing the filter.

That leads to simpler design formulas.

For the general case where the inductive couplings

between the nearest and next-nearest neighbors are con-

sidered, the equivalent circuit of the bandpass filter de-

rived from the Z-type equivalent representation of Fig.

2(a) is shown in Fig. 6.

In Fig. 6, transformer sections are introduced as end

sections to obtain realizable impedance levels in the inte-

rior of the filter. The circuits, which consist of inductances

2;, (or ZfiM) and a ideal inverter jZ~l (or jZ~~), behave
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Fig. 6. Equivalent circuit of the new bandpass filter.
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Fig. 7. Prototype LC low-pass filter.

TABLE II
DESIGN FORMULAS FOR THE NEW BANDPASS FILTSR

(ikf=3(N+ 1)/2)

Zpp’zp+l ,P+l’2+ {M+:*1+$V2)

“)

p= 34

Zp, p+l = Cpzpp
4=1,2, ---,;-1

zi, {+2 ‘Zj, {+lzf+l, {+zfzj+l, j+l j=l,2, --,u-z

[Yo] = [ZO]-l

approximately like unit elements in the vicinity of the

quarter-wavelength frequency (see Fig. 3). These char-

acteristic impedances Z~l, Z&~ are chosen equal to their

terminations (1 Q), so as not to alter the attenuation of the

filter.

If [ YO] is assumed to be a sparse matrix, the relations

between the element values of the [Zo] matrix which is the

inverse matrix of [ Yo] are given as

zj,j+2=zjj+1zj+1,J+2/zj+,J+,, j=l,2,. ..,2–2.

(7)

By imposing the relations and by equating the proto-

type LC low-pass filter as shown in Fig, 7, whose cutoff
frequency is normalized as 1, to the equivalent circuit of

Fig. 6, we obtain the design formulas as shown in Table

II, which are based to a first approximation on the

assumption of a sparse [ YO] matrix.

The order N of the desired insertion-loss function must

be an odd number and the number of transmission lines is

given as M= 3(N+ 1)/2.

In the design formulas, we use a coupling parameter CP

between the line pairs and an independent parameter h

which controls impedance levels in the filter interiors. The

coupling parameter CP gives the relative degrees of “cou-

pling” between line pairs. This is defined as

c,= zti/@ , j=i+l (8)

where ZY are (i,j) element of the impedance matrix.

Generally all elements of the resulting [ YO] matrix have

nonzero values, but all element values except those of the

diagonals and the subdiagonals must be negligible be-

cause of (7). Then neglecting those element values, a

sparse [ YO] matrix is obtained. The validity and accuracy

of this design method is demonstrated by showing numeri-

cal examples in the next section.

IV. EXAMPLES OF DESIGN AND VERIFICATION OF

DESIGN ACCURACY

The accuracy of both the equivalent representations

and the design formulas were verified theoretically be-

cause of the approximations necessary in their derivation.

This was done by exact computations of the insertion-loss

responses of the actual coupled-line filter networks speci-

fied by the formulas for various bandwidths and for either

maximally flat or equal-ripple responses. This paper

shows the cases of the hairpin-line filter and of the new

bandpass filter.

Figs. 8 and 9 show calculated insertion-loss responses

for N= 5 hairpin-line filters and N= 5 bandpass filters of

the new type, respectively. The theoretical responses com-

puted using the exact network matrix are depicted by the

solid lines in Figs. 8 and 9. Design data of bandpass filters

of the new type are also shown in Table III.

The [ YO] matrix was first calculated using the design

formulas of Table II. Table III shows the diagonal and

subdiagonal values of the [ YO] matrix for the case of the

new type of bandpass filters. And the other element values

were under 10– 2 and, therefore, negligible. Then the re-

sponses of all filters were computed based on a sparse

capacitance-matrix assumption. They proved to be very

accurate for relative bandwidths up to 0.3, and even at 0.4

the response is adequate for many applications.

In order to check the influence of inductive couplings

beyond nearest neighbors, the responses were recalculated

using the values derived by the same design procedures

except neglecting the inductive couplings beyond nearest

neighbors. The results are depicted by a dashed line in

Fig. 9.

From the comparison, it is concluded that the proposed

design method for bandpass filters of the new type gives

exact designs based on a sparse capacitance matrix for

any practical purposes up to 30-percent bandwidth and
more.

If this design method is compared with design methods

for half-wave parallel-coupled-line filters given by Cohn

[4], hairpin-line filters given by Cristal and Frankel [6], [7],

and an approximate design method by Matthaei [5], either

method should give good results for filters of about 10

percent bandwidth or less. For bandwidth greater than
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Fig. 8.

0, 1’0lf/&ll 2’0
Insertion-loss curves of hairpin-fine filters designed

ally flat responses (N= 5, h = 1.5, CP= 0.1).
for maxim-

o, 0,5
[f/.jo-l I 1’0

Fig. 9. Insertion-loss curves of bandpass fitters of the new type for
equal-ripple responses (N= 5, 0.1 (dB)-ripple).

TABLE 111
DESIGN DATA OF Nt?.w BANDPASS FILTSRS

(4,-4,)/4”

i

1

2

3

4

5

6

7

8

~

IParameters

,

0.1

fii Yi,i+!
1.0000 0.2450

1.0035 0.1173

1.8195 0.1805

1.8140 0.0953

1.0101 0.0953

1.8140 0.1805

1.8195 0.1173

1.0035 0.2450

1.0000

0.3

Yii ‘i, i+l

1.0001 0.3766

1.0254 0.3136

1.8237 0.1707

1.7890 0.2831

1.0906 0.2831

1.7S90 0.1707

1.8237 0.3136

1.0254 0.3766

1.0001

h=l. o Cp=o .1

about 10 or 15 percent, Cohn’s method does not give

accurate designs - and the design equations descr;bed

herein and those by Matthaei and Cristal are preferable.

For bandwidth greater than about 30 or 40 percent, the

proposed design technique does not give greater accuracy

than that derived by Matthaei and Cristal.

However Matthaei’s technique is confined to circuits

which are exactly or approximately representable with

unit elements and open- and short-circuited lines. It often

requires special techniques to derive equivalent circuits of

multiwire line networks expressed by unit elements and

open- and short-circuited lines. Furthermore, the deriva-

tion of equivalent circuits based on the assumption of

neglecting capacitive couplings beyond the nearest

neighbors is more complicated in the case of hairpin-line

filters and so forth. Even based on the assumption pro-

posed herein as the first approximation of a sparse capaci-

tance matrix, it is difficult to derive the equivalent circuits.

The same things can be said about other approximate

design methods.

While the new design method can lead to the equivalent

circuits even more easily and does not require any special

techniques, if we design the other types of bandpass or

bandstop filters whose structures are more complicated,

the new design method is preferable.

V. CONCLUSION

Simplified lumped-element equivalent representations

for multiwire lines have been derived by introducing a

new variable q. The derived two types of representations

are equivalent for multiwire lines under 5-percent relative

error in the frequency range 0.85 <j/jO <1.15. It is con-

cluded that these equivalent representations are useful for

both the analysis and the design of bandpass and band-

stop commensurate-line length networks and coupled-line

filters and directional couplers of narrow bandwidths, etc.

As an application of the new representations, we derived a

general design method, which can be applied to several

types of coupled-line filters. Furthermore, the accuracies

of the derived representations and design formulas were

verified theoretically by using examples of hairpin-line

filters and bandpass filters of the new type.
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Propagation in a Rectangular Waveguide
Periodically Loaded with Resonant Irises

MANUEL S. NAVARRO, MEMBER, IEEE, TULLIO E. ROZZI, SENIOR MEMBER, IEEE, AND YUEN TZE LO,

FELLOW , IEEE

Mwraet-Io this contribution we treat the problem of en fnfffte

r@aO&lh WllVt?gtddS PU’bdidty loaded by means of inffoftely tbfn

resxnumt frfsee.

The method of solution breaks down the problem into two separate

etepw 1) the mokiport network cbaraeterisetion of the resonant fr@ 2) the

network analysis of the equivalent periodic network,

The results for the resmreot iris cen be used for various appficatiorq

such es the deeign of wavegnide filters end metehiog networks. h the

ffmitfng cmee of purely capacitive or induetfve frfsq the resadts agree

exactly with existing experbnentaf end nuruericaf vefuee.

The size of tbe eigenvefne equetion to be solved for the periodfc

etruehue equafs Iudf the number of ports of the network ehareeterizatfon

of the his and is generalfy srnaff (typically five to seven). The eigenvafuee

beve good convergence propertk with respect to the size of the metrix.

I. INTRODUCTION

I
n recent years the corrugated waveguide has found wide

use in radar and communication systems. Significant

research has been done on the problem of the circular

corrugated waveguide. We distinguish three main ap-

proaches:

1) the modified boundary condition method, applica-

ble only for a special value of the groove depth [1],

[2];

2) the modified residue calculus technique [1], [3] ap-

plicable only for certain modal configurations;

3) mode matching technique [1] which is fairly general

in applicability.

In the case of the rectangular guide, however, method 1)

cannot be implemented analytically [3], [4]. Method 2) is
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altogether not applicable. Method 3) is also not applicable

for this kind of geometry owing to the nonseparability of

the configuration [4].

Brown in 1958 [5] suggested that a periodically loaded

waveguide be modeled by means of a cascade of identical

multiport reactance connected by a finite number of

uncoupled transmission lines. Each reactance represents a

discontinuity in the cascade, which causes coupling be-

tween waveguide modes otherwise uncoupled. Unfor-

tunately, up to date this approach could not be actually

implemented, due to the lack of proper multiport repre-

sentation of the discontinuity.

Recently, however, a method for deriving lumped,

wide-band equivalent networks of waveguide discontinui-

ties has become available. The above has been applied to

the problems of the inductive and capacitive iris and step

[6], [7]. Apart from having inherently good convergence

properties and involving manipulations with small

matrices only, this approach separates the frequency and

the geometry dependence, so that the analysis need not be

repeated at each frequency point. A detailed discussion

has been given elsewhere [6]–[8]. However, for the con-

venience of the reader, we recall here the concept of

“accessible” and “localized” modes. Accessible modes are

the waveguide modes that being excited at the location of

one discontinuity, are “seen” by the adjacent discontinui-

ties. This includes all the propagating modes of the origi-

nal (unloaded) waveguide, plus, possibly, the first few

evanescent ones, depending upon the separation between

adjacent discontinuities.

Each accessible mode corresponds to a pair of accessi-

ble ports in the multimode equivalent network of the

discontinuity. Between discontinuities, each accessible

mode is described by means of a length of transmission

line. All remaining modes, purely evanescent, are called

localized, as they remain localized to the neighborhood of

the discontinuity that excites them. The latter, collectively,

0018-9480/80/0800-0857$00.75 @1980 IEEE


