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Simplified Equivalent Representations for
Multicoupled Lines and their Application
to Filter Design

HIROAKI KUNIEDA

Abstract—This paper presents simplified lumped-type equivalent repre-
sentations, which are equivalent to multiwire lines in the vicinity of a
quarter-wavelength frequency. It is believed that the derived representa-
tions can easily be applied to the analysis and the design of coupled-line
filters and directional couplers of narrow bandwidths composed of
quarter-wavelength strips.

In this paper, the general design method for coupled-line bandpass
filters is presented as one of the applications. A new bandpass filter is
proposed and the design formulas of the filter are derived by using the
design method. Furthermore, the range of validity of the derived repre-
sentations has been checked by showing numerical design examples. They
have been found to give excellent results for coupled-line filters of
bandwidths up to about 30 percent.

I. INTRODUCTION

RAPH REPRESENTATION is widely known as the
Gequivalent circuit of the multiwire-line network [1]. It
consists of distributed inductances and uncoupled unit
elements in terms of Richards’ variable (p=tanh(y/)).
This graph transformation method is often useful in yield-
ing the equivalent circuits of coupled-line filters and other
circuit elements.

Since this graph representation consists of two-port
elements as unit elements, it sometimes requires special
techniques for circuit transformations and also it is not
easy to apply computer aided design methods.

To avoid these disadvantages, lumped-element equiv-
alent representations by use of a half-angle Richards’
variable (§=2tanh(y//2)) were proposed by M. Onoda
and the author [2]. The derived representations were use-
ful for analysis but not easily applied to design filters.

On the other hand, coupled-line filters and directional
couplers of narrow bandwidths are particularly useful in
practical microwave systems. Therefore, useable sim-
plified lumped-element equivalent representations for
multiwire lines are required for both analysis and synthe-
sis even if they are only approximately valid in the vicinity
of the quarter-wavelength frequency f;.

This paper presents simplified lumped-element equiv-
alent representations for multiwire lines by introducing a
new variable (g=2tanh(j(7/4((f/fy) —1))). The derived
representations are useful under about 5-percent relative
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error in the frequency range 0.85<f/f,<1.15. The repre-
sentations consist of an ideal immittance—inverter bank
and distributed capacitances or inductances in terms of
this g-variable.

Both exact [3] and approximate design methods [4]-[9]
of distributed coupled-line filters have been reported pre-
viously. As an application of the new representation, a
new approximate design method of coupled-line filters is
proposed. The design method can uniformly be applied to
various types of coupled-line filters. Several new and
improved results are obtained. In particular, this paper
shows that the new design method leads to the equivalent
circuits of coupled-line filters easily and does not require
any special techniques. And it shows that the model
expressed by the inductance matrix with inductive cou-
plings between nearest and next-nearest neighbors is ade-
quate and preferable over a sparse capacitance-matrix
design for coupled-line filters with comparatively many
open-circuited terminals. Furthermore, this paper pro-
poses a new type of bandpass filter. Design examples of
new bandpass filters and hairpin-line filters show that the
sparse capacitance matrices designed by the proposed
method give exact responses for relative bandwidth up to
0.3 and more.

II. SIMPLIFIED EQUIVALENT REPRESENTATIONS

A. Exact Equivalent Circuit

Previously M. Onoda and the author reported the
lumped-element equivalent representation for lossless
multicoupled lines by using a half-angle Richards® vari-
able (§=2tanh(j(7/4)(f/f)), where f, is the quarter-
wavelength frequency. In place of this §-variable, the
following new variable g is considered:

q=2tanh(j§(7f;— )) (1)

Richards’ variable (p=tanh(j(w/4)(f/f,)) can be ex-
pressed by this g-variable as

p=(4+4%)/4q. )

Fig. 1 shows the frequency characteristics of this vari-
able. In terms of this g-variable, the 2n-port ABCD matrix
[F] of the n-wire line of length / and characteristic imped-
ance (or admittance) matrix [Z,] (or [Y,]) is expressed by
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Fig. 1. The frequency characteristics of the g-variable.

the rational functions of ¢ as

oo | L] [2)6+)
[ ]—4—q2 [Yo](4+q7)  4q[1,]

Since this g-variable becomes zero at f;, this frequency
transformation leads to a BP to LP transformation. Equa-
tion (3) can be expressed in another form as

€)

[F]=_1— [1.] aq[ Z,)
Vi-(ear L0[%]  [L]
1 0 J[%]
Y] ©
1 L] aq[Z) .
I —(cq) L04[Yo]  [L] (42)
__J | (a+b)[1,] (1+a%)[Z]
1=(cq)’ | (1+6°)[ Vo] (a+b)g[1,]
(4b)

where a=b=c=1/2.

The first term and the third term are ABCD matrices of
multiwire lines of length //2 in the (g/2)-domain. The
second term represents the ideal immittance—inverter
bank. By cascade connecting circuits corresponding to
each term of (4a), we can obtain the exact equivalent
representation of the multicoupled lines in terms of the
g-variable.

B. Simplified Equivalent Representations

In order to obtain simplified equivalent representations
in the vicinity of f=f, (=0), we change the coefficients
of ¢* terms in (3). These changes do not cause large error
if we choose other values of a,b,c under the restriction of
a+b=1 in (4b). The simplest representations are derived
by choosing a) a=1, b=c¢=0, or b) b=1, a=c=0. Corre-
sponding to these replacements, we obtain two types of
simplified equivalent representations for multiwire lines
by cascade connecting the circuits corresponding to each
term of (4a) for both a) and b). The representations
obtained for the case of n=2 are shown in Fig. 2(a) and
(b). The two types of ideal immittance—inverter banks as
shown in Fig. 2(a) and (b) are electrically equivalent.

Since the circuits in Fig. 2(a) and (b) are expressed by
the values of characteristic impedance and admittance
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Fig. 2. Simplified equivalent circuits of multiwire lines (n=2). (a)
Z-type representation. (b) Y-type representation.
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Fig. 3. Simplified equivalent circuits of fundamental circuit elements.

TABLE
RELATIVE ERRORS OF OPEN-CIRCUITED LINE PERCENT
(§/4,)-1 1 z-type | Y-type
0.05 ~0.154 | 0.466
0.10 -0.619 | 1.905
0.15 ~1.400 | 4.452
0.20 -2,509 | 8.365
0.30 -5.760 [22.47

matrices, respectively, we call them Z-type and Y-type
representations, respectively. They are easily extended for
the general cases of n-wire lines. Furthermore, fundamen-
tal circuit elements for commensurate-line-length
networks can be expressed as shown in Fig. 3 by use of
the derived two types of equivalent representations in the
simple case of n=1.

The derived two types of representations were tested
first theoretically with the line short- and open-circuited at
the far end. Table I shows the relative errors of input
impedances compared with the exact computations for the
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case of the line open-circuited at the far end. The relative
error for the Z-type and Y-type representations is under 5
percent for 0.7<f/f,<1.3 and 0.85<f/f,<1.15, respec-
tively.

In the case of the line short-circuited at the far end, the
relative errors for each type of representation are the same
as those in the case of the line open-circuited at the far
end.

From these results it is concluded that two types of
representations would be quite adequate for most
narrow-band applications. In general, the Y-type repre-
sentation is suitable for the analysis and the synthesis of
circuits with comparatively many short-circuited terminals
for reasons of easiness and accuracy. On the contrary,
circuits with comparatively many open-circuited terminals
can easily and accurately be analyzed and synthesized by
the use of Z-type representation.

II1.

As an application of the derived equivalent representa-
tions, the general design method for coupled-line band-
pass or bandstop filters is discussed. Design formulas for
coupled-line bandpass or bandstop filters can be obtained
by equating their equivalent circuits derived from the
general equivalent representations of Fig. 2(a) and (b) to
LC low-pass filters.

In designing these filters, one should first select the type
of response function and the number of lines that yield
the desired insertion loss function of w in the pass and
stopbands. If we denote the desired passband edges of
coupled-line filters by f; and f,, the quarter-wavelength
frequency f; and the length of the lines / are determined as

1+
om0 ©)

where A, is the wavelength in transmission lines at f,. Next
the element values of the prototype filters may be com-
puted and then the elements of the characteristic imped-
ance [Z,] or admittance matrices [ Y,] can be derived from
the design formulas. This may be done with the aid of the
following approximate relationship between the frequency
scales of the prototype filters and the coupled-line filters

"ﬁ_ﬁ) (6)

Qc—2tan(z 3,
where ©, is the cutoff frequency in the g-domain. Further-
more, the n-wire line dimensions should be determined to
yield these matrices. These may be determined from vari-
ous design charts [10].

In this paper, we show the procedure for deriving the
design equations of a new bandpass filter as shown in Fig.
4. The design equations for well-known filters such as
hairpin-line and interdigital-line filters are similarly de-
rived. The advantages of filters of this new type are that
they have fewer connections to ground than interdigital
filters and they require fewer transmission lines than
hairpin-line filters to realize the same order of bandpass
filter.

The assumption of negligible capacitive couplings be-
yond the nearest neighbors (i.e., a sparse capacitance-
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Fig. 4. A new bandpass filter.
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Fig. 5. Derivation of the equivalent circuit of the new bandpass filter.

matrix assumption) corresponds more closely to physical
reality than the one neglecting inductive couplings beyond
the nearest neighbors (i.e., a sparse inductance-matrix
assumption) [6], [8]. However, the sparse capacitance-
matrix assumption leads to very complex equivalent
circuits for hairpin-line filters and filters of this type. By
considering inductive couplings between not only nearest
neighbors but next-nearest neighbors, the proposed design
method leads to easier design procedure based to a first
approximation on the assumption of a sparse [Y,] matrix.

First we derive the equivalent circuit of the section of
Fig. 5(a). Boundary conditions are applied to the termi-
nals of the Z-type representation of Fig. 2(a) with induc-
tive couplings between next-nearest neighbors. Then
open-circuited terminals disappear because they connect
with series inductances and series inverters. We obtain an
equivalent circuit as shown in Fig. 5(b). Reducing the
mutual inductive couplings to a capacitance and induc-
tances, we obtain the equivalent circuit shown in Fig. 5(c)
of the section of Fig. 5(a). Because of a small influence to
the narrow-band bandpass filter characteristics, we ne-
glect the capacitance (Z,3/Z,,Z,,;) in designing the filter.
That leads to simpler design formulas.

For the general case where the inductive couplings
between the nearest and next-nearest neighbors are con-
sidered, the equivalent circuit of the bandpass filter de-
rived from the Z-type equivalent representation of Fig.
2(a) is shown in Fig. 6.

In Fig. 6, transformer sections are introduced as end
sections to obtain realizable impedance levels in the inte-
rior of the filter. The circuits, which consist of inductances
Z}, (or Zz;,,) and a ideal inverter jZ7, (or jZy,,), behave
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Fig. 7. Prototype LC low-pass filter.

TABLE II
DEsiGN ForMULAS FOR THE NEW BANDPASS FILTER
(M=3(N+1)/2)

y1=2-1/1140,/61) 2y T2-1/UI49 /6y
Q2= /R, 15, ZM-!,M R
Zyp=hi(1+,/6) By, ythli#n,/6y)
.M
Tpez,pre” 0 Lif3o1) pe3e
Ip-1,p =he/ G 1G2(1-Cp) - ",
AS, 0,
Ipr1,pro=he, /Y82 8, 1y 11-Cp) ’
2ot lpet p,1=ﬂ#ﬂh+§-§d’n—+§m,ml pe3e
’ P po1 ey Zpra e y
«r1,2,-2- 51
Ip,pr1 = Cplpp
z{,i+2 =Zf.i+lz1ﬂ,{+2/zj+1,j+1 §=1,2,-- M2

[yo] = [Zo]—l

approximately like unit elements in the vicinity of the
quarter-wavelength frequency (see Fig. 3). These char-
acteristic impedances Z7,Z;;,, are chosen equal to their
terminations (1 §2), so as not to alter the attenuation of the
filter.

If [Y,] is assumed to be a sparse matrix, the relations
between the element values of the [Z;] matrix which is the
inverse matrix of [ Y] are given as

J=12 ,M=2.
(M

By imposing the relations and by equating the proto-
type LC low-pass filter as shown in Fig. 7, whose cutoff
frequency is normalized as 1, to the equivalent circuit of
Fig. 6, we obtain the design formulas as shown in Table
II, which are based to a first approximation on the
assumption of a sparse [ Y] matrix.

The order N of the desired insertion-loss function must

be an odd number and the number of transmission lines is
given as M=3(N+1)/2.

Zj,j+2= ZjJ+le+ 1,j+2/zj+ Lji+1
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In the design formulas, we use a coupling parameter C,
between the line pairs and an independent parameter
which controls impedance levels in the filter interiors. The
coupling parameter C, gives the relative degrees of “cou-
pling” between line pairs. This is defined as

C,=2,/\Z,Z,

where Z;; are (i,j) element of the impedance matrix.

Generally all elements of the resulting [ Y,] matrix have
nonzero values, but all element values except those of the
diagonals and the subdiagonals must be negligible be-
cause of (7). Then neglecting those element values, a
sparse [ Y,] matrix is obtained. The validity and accuracy
of this design method is demonstrated by showing numeri-
cal examples in the next section.

J=i+1

®)

IV. EXAMPLES OF DESIGN AND VERIFICATION OF
DESIGN ACCURACY

The accuracy of both the equivalent representations
and the design formulas were verified theoretically be-
cause of the approximations necessary in their derivation.
This was done by exact computations of the insertion-loss
responses of the actual coupled-line filter networks speci-
fied by the formulas for various bandwidths and for either
maximally flat or equal-ripple responses. This paper
shows the cases of the hairpin-line filter and of the new
bandpass filter.

Figs. 8 and 9 show calculated insertion-loss responses
for N=35 hairpin-line filters and N=35 bandpass filters of
the new type, respectively. The theoretical responses com-
puted using the exact network matrix are depicted by the
solid lines in Figs. 8 and 9. Design data of bandpass filters
of the new type are also shown in Table III.

The [Y,] matrix was first calculated using the design
formulas of Table II. Table III shows the diagonal and
subdiagonal values of the [Y,] matrix for the case of the
new type of bandpass filters. And the other element values
were under 1072 and, therefore, negligible. Then the re-
sponses of all filters were computed based on a sparse
capacitance-matrix assumption. They proved to be very
accurate for relative bandwidths up to 0.3, and even at 0.4
the response is adequate for many applications.

In order to check the influence of inductive couplings
beyond nearest neighbors, the responses were recalculated
using the values derived by the same design procedures
except neglecting the inductive couplings beyond nearest
neighbors. The results are depicted by a dashed line in
Fig. 9.

From the comparison, it is concluded that the proposed
design method for bandpass filters of the new type gives
exact designs based on a sparse capacitance matrix for
any practical purposes up to 30-percent bandwidth and
more.

If this design method is compared with design methods
for half-wave parallel-coupled-line filters given by Cohn
[4], hairpin-line filters given by Cristal and Frankel [6], [7],
and an approximate design method by Matthaei [5], either
method should give good results for filters of about 10
percent bandwidth or less. For bandwidth greater than
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Fig. 9. Insertion-loss curves of bandpass filters of the new type for

equal-ripple responses (N =35, 0.1 (dB)-ripple).

TABLE III
DESIGN DATA OF NEW BANDPASS FILTERS
(§2-41)/40 0.1 0.3
i Vi1 Vi | Vit Yi,i+1
1 1.0000 0.2450 ] 1.0001 0.3766
2 1.0035 0.1173 | 1.0254 0.3136
3 17.8195 0.1805 | 1.8237 0.1707
4 1.8140 0.0953| 1.7890 0.2831
5 1.0101 0.0953 | 1.0906 0.2831
6 1.8140 0.1805} 1.7890 0.1707
7 1.8195 0.1173 | 1.8237 0.3136
8 1.0035 0.2450| 1,0254 0.3766
9 1.0000 1.0001
Parameters h=1.0 Cp=0.1

about 10 or 15 percent, Cohn’s method does not give
accurate designs and the design equations described
herein and those by Matthaei and Cristal are preferable.
For bandwidth greater than about 30 or 40 percent, the
proposed design technique does not give greater accuracy
than that derived by Matthaei and Cristal.
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However Matthaei’s technique is confined to circuits
which are exactly or approximately representable with
unit elements and open- and short-circuited lines. It often
requires special techniques to derive equivalent circuits of
multiwire line networks expressed by unit elements and
open- and short-circuited lines. Furthermore, the deriva-
tion of equivalent circuits based on the assumption of
neglecting capacitive couplings beyond the nearest
neighbors is more complicated in the case of hairpin-line
filters and so forth. Even based on the assumption pro-
posed herein as the first approximation of a sparse capaci-
tance matrix, it is difficult to derive the equivalent circuits.
The same things can be said about other approximate
design methods.

While the new design method can lead to the equivalent
circuits even more easily and does not require any special
techniques, if we design the other types of bandpass or
bandstop filters whose structures are more complicated,
the new design method is preferable.

VY. CONCLUSION

Simplified lumped-element equivalent representations
for multiwire lines have been derived by introducing a
new variable g. The derived two types of representations
are equivalent for multiwire lines under 5-percent relative
error in the frequency range 0.85<f/f,<1.15. It is con-
cluded that these equivalent representations are useful for
both the analysis and the design of bandpass and band-
stop commensurate-line length networks and coupled-line
filters and directional couplers of narrow bandwidths, etc.
As an application of the new representations, we derived a
general design method, which can be applied to several
types of coupled-line filters. Furthermore, the accuracies
of the derived representations and design formulas were
verified theoretically by using examples of hairpin-line
filters and bandpass filters of the new type.
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Propagation in a Rectangular Waveguide
Periodically Loaded with Resonant Irises

MANUEL S. NAVARRO, MEMBER, IEEE, TULLIO E. ROZZI, SENIOR MEMBER, IEEE, AND YUEN TZE LO,
FELLOW, IEEE

Abstract—In this contribution we treat the problem of an infinite
rectangular waveguide periodically loaded by means of infinitely thin
resonant irises.

The method of solution breaks down the problem into two separate
steps: 1) the multiport network characterization of the resonant iris; 2) the
network analysis of the equivalent periodic network.

The results for the resonant iris can be used for various applications,
such as the design of waveguide filters and matching networks. In the
limiting cases of purely capacitive or inductive irises, the results agree
exactly with existing experimental and numerical values.

The size of the eigenvalue equation to be solved for the periodic
structure equals half the number of ports of the network characterization
of the iris and is generally small (typically five to seven). The eigenvalues
have good convergence properties with respect to the size of the matrix.

I. INTRODUCTION

n recent years the corrugated waveguide has found wide
Iuse in radar and communication systems. Significant
research has been done on the problem of the circular
corrugated waveguide. We distinguish three main ap-
proaches:

1) the modified boundary condition method, applica-
ble only for a special value of the groove depth [1],
[25;

2) the modified residue calculus technique [1], [3] ap-
plicable only for certain modal configurations;

3) mode matching technique [1] which is fairly general
in applicability.

In the case of the rectangular guide, however, method 1)
cannot be implemented analytically [3], [4]. Method 2) is
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altogether not applicable. Method 3) is also not applicable
for this kind of geometry owing to the nonseparability of
the configuration [4].

Brown in 1958 [5] suggested that a periodically loaded
waveguide be modeled by means of a cascade of identical
multiport reactances connected by a finite number of
uncoupled transmission lines. Each reactance represents a
discontinuity in the cascade, which causes coupling be-
tween waveguide modes otherwise uncoupled. Unfor-
tunately, up to date this approach could not be actually
implemented, due to the lack of proper multiport repre-
sentation of the discontinuity.

Recently, however, a method for deriving lumped,
wide-band equivalent networks of waveguide discontinui-
ties has become available. The above has been applied to
the problems of the inductive and capacitive iris and step
[6), [7]. Apart from having inherently good convergence
properties and involving manipulations with small
matrices only, this approach separates the frequency and
the geometry dependence, so that the analysis need not be
repeated at each frequency point. A detailed discussion
has been given elsewhere [6]-[8]. However, for the con-
venience of the reader, we recall here the concept of
“accessible” and “localized” modes. Accessible modes are
the waveguide modes that being excited at the location of
one discontinuity, are “seen” by the adjacent discontinui-
ties. This includes all the propagating modes of the origi-
nal (unloaded) waveguide, plus, possibly, the first few
evanescent ones, depending upon the separation between
adjacent discontinuities.

Each accessible mode corresponds to a pair of accessi-
ble ports in the multimode equivalent network of the
discontinuity. Between discontinuities, each accessible
mode is described by means of a length of transmission
line. All remaining modes, purely evanescent, are called
localized, as they remain localized to the neighborhood of
the discontinuity that excites them. The latter, collectively,

0018-9480/80,/0800-0857$00.75 ©1980 IEEE



